LINE-1-derived poly(A) microsatellites undergo rapid shortening and create somatic and germline mosaicism in mice.
نویسندگان
چکیده
Interspersed and tandem repeat sequences comprise the bulk of mammalian genomes. Interspersed repeats result from successive replication by transposable elements, such as Alu and long interspersed element type 1 (L1). Microsatellites are tandem repeats of 1-6 base pairs, among which poly(A) microsatellites are the most abundant in the human genome. The rise and fall of a microsatellite has been depicted as a life cycle. Previous studies have demonstrated that Alu and L1 insertions are a major source of A-rich microsatellites owing to the concurrent formation of a poly(A) DNA tract at the 3'-end of each insertion. The fate of such poly(A) tracts has been studied by surveying the length distribution of genomic resident Alu and L1 insertions. However, these cross-sectional studies provide no information about the tempo of mutation immediately after birth. In this study, de novo L1 insertions were created using a transgenic L1 mouse model and traced through generations to investigate the early life of poly(A) microsatellites. High frequencies of intra-individual and intergenerational shortening were observed for long poly(A) tracts, creating somatic and germline mosaicism at the insertion site, whereas little variation was observed for short poly(A) alleles. As poly(A) microsatellites are the major intrinsic signal for nucleosome positioning, their remarkable abundance and variability make them a significant source of epigenetic variation. Thus, the birth of poly(A) microsatellites from retrotransposons and the subsequent rapid and variable shortening represent a new way with which retrotransposons can modify the genetic and epigenetic architecture of our genome.
منابع مشابه
Pervasive Genotypic Mosaicism in Founder Mice Derived from Genome Editing through Pronuclear Injection
Genome editing technologies, especially the Cas9/CRISPR system, have revolutionized biomedical research over the past several years. Generation of novel alleles has been simplified to unprecedented levels, allowing for rapid expansion of available genetic tool kits for researchers. However, the issue of genotypic mosaicism has become evident, making stringent analyses of the penetrance of genom...
متن کاملGermline and somatic mosaicism in a female carrier of Hunter disease.
Carrier detection in a mucopolysaccharidosis type II family (Hunter disease) allowed the identification of germline and somatic mosaicism in the patient's mother: the R443X mutation was found in a varying proportion in tested tissue (7% in leucocytes, lymphocytes, and lymphoblastoid cells, and 22% in fibroblasts). The proband's sister carries the at risk allele (determined by haplotype analysis...
متن کاملDetection of Base Substitution-Type Somatic Mosaicism of the NLRP3 Gene with >99.9% Statistical Confidence by Massively Parallel Sequencing
Chronic infantile neurological cutaneous and articular syndrome (CINCA), also known as neonatal-onset multisystem inflammatory disease (NOMID), is a dominantly inherited systemic autoinflammatory disease and is caused by a heterozygous germline gain-of-function mutation in the NLRP3 gene. We recently found a high incidence of NLRP3 somatic mosaicism in apparently mutation-negative CINCA/NOMID p...
متن کاملGermline and somatic mosaicism for FGFR2 mutation in the mother of a child with Crouzon syndrome: Implications for genetic testing in “paternal age-effect” syndromes
Crouzon syndrome is a dominantly inherited disorder characterized by craniosynostosis and facial dysostosis, caused by mutations in the fibroblast growth factor receptor 2 (FGFR2) gene; it belongs to a class of disorders that mostly arise as de novo mutations and exhibit a near-exclusive paternal origin of mutation and elevated paternal age ("paternal age effect"). However, even if this is the ...
متن کاملDifferences between germline and somatic mutation rates in humans and mice
The germline mutation rate has been extensively studied and has been found to vary greatly between species, but much less is known about the somatic mutation rate in multicellular organisms, which remains very difficult to determine. Here, we present data on somatic mutation rates in mice and humans, obtained by sequencing single cells and clones derived from primary fibroblasts, which allows u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 30 3 شماره
صفحات -
تاریخ انتشار 2013